
DOCUMENT RESUME

ED 04E 357 TM 000 433

AUTHOR Keats, John B.; Brewer, James K.
TITLE A Distribution-Free Test for Model Comparisons.
PUB LATE Feb 71
NOTE 19p.; Paper presented at the Annual Meeting of the

American Educational Research Association, New York,
New York, February 4-7, 1971

EDRS PRICE
DEST:RIFTORS

ABSTRACT

EDRS Price ME-S0.65 HC-$3.29
*Goodness of Fit, Hypothesis Testing, *Mathematical
Models, *Nonparametric Statistics, Probability
Theory, Pesearch Methodology, *StaUstical Analysis,
*Tests of Significance

This paper presents an index of goodness-of-fit for
comparing m models over n trials. The index allows for differentiated
weighting of the trials as to their importance in the comparison of
the models. Several possible weighting schemes are suggested and the
conditions on the weights which assure asymptotic normality of the
index distribution are presented. A relative goodness-of-fit test
using the index is propused which is distribution-free under the null
hypothesis. Both single model and simultaneous inferential tests are
presented for large values of n. An application of the index and
subsequent inferences are provided using three probability learning
models and human suhject data. (Author)



U.S DEPARTMENT OF HEALTH. EDUCATION

N.
AWELFARE

OFFICE OF EDUCATION

Ln
THIS DOCUMENT HAS BEEN REPRODUCED
EXACTLY AS RECEIVED FROM THE PERSON OR
ORGAHIZATION ORIGINATING IT POINTS CF
VIEW on OPINIONS STATED DO NOT N CES-

O
SARILY REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY

O
L.0

A Distribution-Froe Test for Model Comparisons

by

John B. Keats
Louisiana Tech University

Ruston, Louisiana

and

James K. Brewer
Florida State University

0
Taltatiassee, Florida

11414

Paper presented at the Annual Meeting
of the American Educatioral Research
Association, New York, N.Y.

F,Ibruary 5, 1971.



A Distribution-Free Test for Model Comparisons

1. Introduction

Consider a finite set of m mathematical models which have each provided

estimates of subject data at n trial points. A general problem of model

comparisons is concerned with deciding if any one model is a better "fit"

of the data than the other models when there is no universally accepted yard-

stick of "fit" or standard statistical test [Bush and Mosteller, 1959]. The

most common approach to the problem is to compare each model to the data using

some .2 -like procedure. The basic assumption involved therein is one of

independence across trials (or blocks of trials) in order to satisfy the

additivity of the statistical test model. However, if the models are in any

way path-dependent and it is expected that the fit of the models are functions

of n, then the use of such comparison tests is inappropriate since some trials

would be more important than others for model comparison purposes. Tests of

the Kolmogorov-Smirnov, Cram4r-von Mises type (e.g., Birnbaum, 1953; Darling,

1957; Massey, 1951) and others (e.g., Anderson & Darling, 1954; Riedwyl, 19E7;

Tsao, 1955) require a continuous cumulative distribution function for the

random variable which accounts for the data. Atkinson (1969) presents several

tests for model comparisons which measure the deviations of each model's

predictions from some "best" formula which is found by regression.

This paper proposes a distribution-free index for model comparisons which

makes no assumptions about continuity. The index also allows for differential

weighting of trials according to the effect of each trial on the datt. For

example, suppose one is comparing several learning models and it can be assumed
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that each model's proximity (as measured by some definition of proximity) to the

data is a monotonically increasing function of n. Then the trials over which

the models are compared should be differentially weighted by giving heavier

weights to the later trials; for it is in these trials that the models are ex-

pected to provide better estimates of the data points.

Let the measure of closeness of model j at trial i be defined as

fij = lyij - yi I , i = 1, 2, ..., n; j = 1, 2, .. ., m,

where Yij is the estimate of the data value yi given by model j at trial i. It

is apparent that if model j is a closer fit of the data than the other m-1 models,

then fij values will generally be smaller than fik values, k A j (and vice versa

for a poorer fit).

The goodness-of-fit index, defined in Section 2, assigns positive integer

ranks, rij, to the fij fox all i and j. Then weights, wi, are assigned to the

comparison points based on theoretical or empirical considerations as to the

importance of each trial for comparison purposes. Some properties, including

the conditions on the w
i

for asymptotic normality of the index; distribution are

given. In Section 3, a discussion of large sample single-model and simultaneous

inference is presented. Section 4 suggests several possible permissible

weighting schemes and Section 5 illustrates the procedure with three probability

learning models.

(1)

2. The Index and Its Properties

Let the index, denoted, Ij, be defined for the jth model as

n

I
- rij) Pi

m-
i=1

3
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where m = number of models under consideration,

r..
ij

= rank of fij for the jth model at trial i,

P. =
i n

wk

k=1

w.i
and

w. = weight assigned to trial i.
i

Some Properties of Ij:

Proofs of these properties have been ommitted for the sake of brevity.

a) 0 < Ii < 1 .

b) If rij = k for all i then,

I m k
j m l

c) The maximum non-perfect (Ij # 1) value of Ij will occur when

model j is ranked 2 for the data point having the smallest weight and ranked 1

for all other data points. If rank wt is given the ....,-h data point then the

maximum non-perfect Ij value is given be

(4) 1

m

(5) d) y I . mIj 7
1=1

4
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e) If it is assumed that model j fits the data no better than the

other models over all trials, then

(6) E(Ij) = 1/2 .

f) If the rank value of model j at trial i is independent of the

rank value of model j at trial i+k (k > 0) and model j fits the data no better

than any other model, i.e., 15(rij) = l/m for all i, then

(7)

n

Y wi
1=1 m + 1

VAR(Ij)
n 12(m - 1)

14

1

g) A direct application of the Lindenberg-Feller Theorem [0nedenko

and Kolmogorov, 1954] shows that if

(8)
max w

Lim i = 0 ,

n--pm

2
Wi

i=1

then Ij is asymptotically normally distributed. The converse can also be shown

to hold.

3. Significance Tests with I,
J

The implications of property g) is Section 2 is that, coupled with the

independence assumption of property f), we can, for sizable n, use Ij to conduct

a test of

(9) Ho: P(fij > fik) = P(fij < fik), j A k, j fixed,

5
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which is distribution-free under 110. Note that this Ho is equivalent to

Ho: P(rij) = P(rik) for all i, j A k.

Since, under Ho, lj is asymptotically norma:Ay distributed with mean and

variance given respectively by (6) and (7), the statistic

ZIj VAR(Ij)

I. - E(I.)
J j

is approximately distributed N(0,1).

Wen confronted with more than one hypothesis, for example, when j is not

fixed in (9 ), a device for scaling down the significance level can be used. Orw

such device, resulting from the Bonferroni Inequality [Miller, 1966], suggests the

a' /2m level of significance for simultaneous two-tailed tests. Crude though this

estimated significance level is, its derivation does not depend on the Ij, j = 1,

2, ..., m, bei g independent as do most simultaneous test approximations.

4. Some Weighting Functions

The basic subjective portion in the development and use of index Ij is the

assignment of weights wi, i = 1, 2, ..., n to the trials. This will depend on

the relative importance which the experimenter places on the trials used for the

comparisons of the models and can take on almost any functional form. There are,

however, several which (a) satisfy the condition in expression (8) for asymptotic

normality , (b) are rational, and (c) possess mathematical simplicity. Three

such weighting functions and their resulting variances are herein presented.

Function 1: w = c, c # o .

The effect here is one of proposing that the trials are all equal for

comparison purposes. This would be the case if an experimeter assumed random

6
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behavior models and did not expect the models to be better fits toward the end

of the trials than at the beginning of the trials or vice versa.

lierethevarianceofI.under the assumptions of property f) becomes

(10) VAR(Ii) m + 1=
' 12n(m - 1)

Function 2: W. =

For this case the assumption is that the later comparison trials are

more important than the earlier trials. This would be appropriate if an

experimenter felt that the models required the earlier trials to sequentially

reach a point beyond which the comparisons with data would be reasonable.

Under this scheme and the assumptions of property f),

VAR(I) (2n + 1)(m + 1)
18(n + 1)(n)(m - 1)

Function 3: Wi = n - i + 1

The assumption for this scheme is that the earlier trials are more

important for model comparison purposes than the later trials and would be

appropriate to use if one believed that some kind of "fatigue" factor was

involved. For example, suppose it was suspected that beyond trial k, the

behavior being modeled gradually began to act in a random or erratic fashion.

Then the later trials could be thought of as "unreliable" for model comparisons.

The variance here is the same as under Function 2 except for subsets of trials

in which the summation of (1) does not run over the full range from 1 to n.

5. Example

Three probability learning models were compared over the last 10 trials
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of a two-choice experiment. In this experiment, human subjects were asked to

predict which of two possible events, El or E2, would occur on each of a series

of trials. Predictions of El and E2 are denoted by responses Al and A2,

respectively. At the end of each trial, the subjects were permitted to observe

which event actually occurred. Event El had a fixed probability Tf = .7 of

occurring in a random sequence.

Model 1, a linear operator model, is due to Estes (1950) and in this

experiment assumed the form

(12) Pr (A1 on trial n+1) = Pl,n+1 Dr- Pi,n](1 e)11-1

where 0 is a rate of learning parameter, 0 < 0 < 1, estimated from observed

response frequencies. This model is usually appli.2d to experiments with many

more trials than the experiment of tLis example, but is included here for

illustrative purposes only.

Models 2 and 3 are of the form

(13)
Pl,n+1 e 111

e is an experience vector of length n representing the trials 1, 2, . , n

and composed of the digits one or zero depending on whether or not El occurred

on a particular trial, and p is a memory vector whos: n elements are propor-

tional to the probabilities of recalling the events of trials 1 to n such that

n

= 1 . The development of the basic theory relative to (13) is due to

1=1

Overall (1960).

Models 2 and 3 differ in the estimation of elements in the memory vector,

. Model 2 employed probabilities which were empirically determined by

Murdock (1962) under a variety of recall conditions, none of which involved
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binary items. The probability of recalling the ith item in a sequence of length

n was

(14) P(i,n) = 1.00 + .27e-77(1-1) - .772(.042)'555(n-i)

The probabilities used in Model 3 were estimated from the data of a

previous experiment where subjects engaged in the two-choice task made recalls

at periodic intervals. These probabilities were

(15) P(i,n) = .9047 - .0694(i) + .0775(i2/n) - .3577(i/n)2 .

Thirty-eight subjects performed the two-choice experiment with T1 = .7 .

Table 1 presents the results of the last 10 trials.

Suppose that Model 3 is of particular interest. If a test of

Ho: P(fi3 > fik) = P(fi3 < fik) , i = 1, 2, ..., 10 , k = 1,2 ,

is conducted at a = .05 under the weights of Function 2, I3 = .8000 and

Z 8
13 . 1457

5 2.059 . Since P(z > 2.059) 114'.02, H, is rejected and Model 3

can be judged to be a significantly better fit than the other models. However,

with the weights of Function 1, I3 = .7500 and Z13 = '7! .637, so that
4083

P(z > .637) . Thus Ho cannot be rejected. Models 1 and 2 are not signi-

ficant under either weighting function since their index values are .4545 and

.2455 respectively using Function 2, and .45 and .30 respectively with Function

1. The Bonferroni test was not significant at the .05 level using Functions 1

or 2.
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Comments and Discussion

In any procedure involving assigned ranks the problem of tied rankings

merits discussion. We have purposely avoided the issue since the standard

procedures of randomly breaking ties or assigning average ranks art_ quite

satisfactory for small numbers of ties. If the number of ties is large, say

> 20%, then we recommend that Ij not be used as an index of goodness-of-fit.

No adjustments are herein proposed to account for the number of ties in

calculating Ij.

The tests oE significance presented in Section 3 were exclusively for

"large" sample sizes, and we propose that n > 10 is sufficient to warrant the

use of the z statistic for testing purposes. Figure 1 graphic..11y illustrates

the exact distribution of I1 under Ho for n = 10, m = 2, and wi =

i = 1, 2, ..., 10. It appears that the normal distribution would yield quite

reasonable approximations. A more practical reason for not deriving and

providing exact distributions for n < 10 is purely financial. The reader

appreciates the massive computing job necessary to provide these distributions

for m > 2 and the need for such small sample distributions (since number of

trials usually exceeds 10) does not justify the expenditure at present. Only

if one were estimating a small number of parameters by several models would

exact small-sample distributions be desirable.

The primary concern in this paper has been with the prerentation of an

index of relative goodness-of-fit rather than its accompanying tests of

significance. This was due to the restrictive assumptions underlying the

test of Ho. The testable hypothesis itself may be so ganeral in form that

11



I
E
C
U
E
N
C
Y

2
7

1
5

2
9

2
8

i
C
H
 
*
 
E
Q
U
A
L
S

3
 
P
O
I
N
T
S

1
1
7

5
9

8
0

9
9

7
4

1
1
8*

1
1
8*

1
0
9

6
4

8
0

5
9

3
9

1
8

1
5

4

1
1
4

*
*

1
1
1

*
*

T
H
E
 
A
V
E
R
A
G
E
 
I
N
D
E
X
 
I
S
 
0
.
4
9
9
9
3
4
2

l
o
p

F
i
g
u
r
e
 
1
 
-
 
A
c
t
u
a
l
 
D
i
s
t
r
i
b
u
t
i
o
n

*
*

*

1
0
5

*
*

*
V
A
R
I
A
N
C
E
 
I
S
 
0
.
0
3
1
8
5
8
4

1
C
2

2
 
m
C
C
E
L
S
 
A
N
D

1
0
 
P
O
S
I
T
I
O
N
S

S
9

*

**

**

**

9
6

*
*

*
*

9
3

*
*

*
*

9
0

*
*

*
*

8
7

*
*

*
*

8
4

*
*

*
*

8
1

*
*

*
*

7
8

*
*

*
1

*
*

7
5

*
*

*
*

*
*

7
2

*
*

*
*

*
*

*

6
9

*
*

*
t

*
*

*

6
6

*
*

*
*

*
*

*

6
3

*
*

*
*

*
*

*
*

6
0

*
*

*
*

*
*

*
*

5
7

*
*

*
*

*
*

*
*

*
*

5
4

*
*

*
*

*
*

*
*

*
*

5
1

*
*

*
*

*
*

*
*

*
*

4
8

*
*

*
*

*
*

*
*

*
*

4
5

*
*

*
*

*
*

*
*

*
*

4
2

*
*

*
*

*
*

*
*

*
*

3
9

*
*

*
*

*
*

*
*

*
*

*

3
6

*
*

*
*

*
*

*
*

*
*

*

3
3

*
*

*
*

*
*

*
*

*
*

*

3
0

*
*

*
*

*
*

*
*

*
*

*

2
7

*
*

*
*

*
*

*
*

*
*

*
*

*

2
4

*
*

*
*

*
*

*
*

*
*

*
*

*

2
1

*
*

*
*

*
*

*
*

*
*

*
*

*

1
8

*
*

*
*

*
*

*
*

*
*

*
*

*
*

1
5

*
*

*
*

*
*

*
*

4
*

*
*

*
*

*
*

1
2

*
*

*
*

*
*

*
*

*
*

*
*

*
-

*
*

9
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

6
*

*
*

*
*

*
.
.
.
.

.
.

*
*

*
*

*
*

*
*

*
*

*
'

3
*

*
*

*
*

*
*

*
*

*
*

4
*

*
.
*

*
*

*

.
0
5

.
1
0

.
1
5

.
2
0

.
2
5

.
3
0

.
3
5

.
4
0

.
4
5

.
5
0

.
5
5

.
6
0

.
6
5

.
7
0

.
7
5

.
8
0

.
8
5

.
9
0

.
9
5

1
.
6
7



-12-

a researcher would not want to test it in the first place. This, as in any

test of hypothesis, does not invalidate the use of the index with its accom-

panying properties fur descriptive purposes as a goodness-of-fit indicator.

The aspect of selecting weight functions is obviously a crucial one and

we have presented only a small selection of simple functions. We have also

assumed that the same weight function would be used for each model for a

particular comparison. The problem of assigning a priori a "best" function

per model and then making the comparisons was not addressed and indeed would

be a difficult problem to handle statistically.

13
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APPENDIX

Simulated Distributions of any I for

m = 2, 3, 4, 5 over 100 Trials Assuming

Pr(rip = lim for i = 1, 2, ...100.
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